机器学习(ML)模型越来越多地用于在现实世界应用中做出关键决策,但它们也变得更加复杂,使它们更难理解。为此,已经提出了几种解释模型预测的技术。但是,从业人员努力利用解释,因为他们通常不知道该使用哪个,如何解释结果,并且可能没有足够的数据科学经验来获得解释。此外,大多数当前的作品都集中在生成一声解释上,并且不允许用户跟进并提出有关解释的细粒度问题,这可能会令人沮丧。在这项工作中,我们通过引入TalkTomodel:一个开放式对话系统来解决这些挑战,以了解机器学习模型。具体而言,TalkTomodel包括三个关键组成部分:1)用于参与对话的自然语言接口,使理解高度访问的ML模型,2)适应任何表格模型和数据集的对话引擎,解释自然语言,将其映射到适当的操作(例如,特征重要性解释,反事实说明,显示模型错误)并生成文本响应,3)执行组件运行操作并确保说明准确。我们对TalkTomodel进行了定量和人类的主题评估。我们发现该系统以高精度了解新颖数据集和模型上的用户问题,这表明了系统将其推广到新情况的能力。在人类评估中,有73%的医护人员(例如,医生和护士)同意他们将使用TalkTomodel对基线点击系统使用,而84.6%的ML研究生同意TalkTomodel更容易使用。
translated by 谷歌翻译
使用深层生成模型从离线演示中提取策略原始的方法已显示出有望加速增强学习(RL)的新任务。直觉上,这些方法还应该有助于培训宣传员,因为它们可以执行有用的技能。但是,我们确定这些技术没有能力用于安全政策学习的能力,因为它们忽略了负面的经历(例如,不安全或不成功),只专注于积极的经验,这会损害他们安全地将新任务推广到新任务的能力。相反,我们将LettentsAfetyConteDlecting绘制在来自许多任务的演示数据集中,包括负面经验和积极经验,对litentsafetycontastect进行了原则性的对比培训。使用此较晚变量,我们的RL框架,安全技能先验(更安全)提取了特定于任务的安全原始技能,以安全,成功地将其推广到新任务。在推论阶段,接受培训的政策学会学会将安全技能纳入成功的政策。从理论上讲,我们描述了为什么更安全的行为能够实施安全的政策学习,并证明其在受游戏操作启发的几种复杂的至关重要的机器人握把任务上,在这种情况下,Saferoutperforms成功和安全方面的最先进的原始学习方法。
translated by 谷歌翻译
反事实解释是作为一种有吸引力的选择,以便向算法决策提供不利影响的个人的诉讼选择。由于它们在关键应用中部署(例如,执法,财务贷款),确保我们清楚地了解这些方法的漏洞并找到解决这些方法的漏洞是重要的。但是,对反事实解释的脆弱性和缺点几乎没有了解。在这项工作中,我们介绍了第一个框架,它描述了反事解释的漏洞,并显示了如何操纵它们。更具体地,我们显示反事实解释可能会聚到众所周知的不同反应性,指示它们不稳健。利用这种洞察力,我们介绍了一部小说目标来培训看似公平的模特,反事实解释在轻微的扰动下发现了更低的成本追索。我们描述了这些模型如何在对审计师出现公平的情况下为数据中的特定子组提供低成本追索。我们对贷款和暴力犯罪预测数据集进行实验,其中某些子组在扰动下达到高达20倍的成本追索性。这些结果提高了关于当前反事实解释技术的可靠性的担忧,我们希望在强大的反事实解释中激发调查。
translated by 谷歌翻译
由于黑匣子的解释越来越多地用于在高赌注设置中建立模型可信度,重要的是确保这些解释准确可靠。然而,事先工作表明,最先进的技术产生的解释是不一致的,不稳定的,并且提供了对它们的正确性和可靠性的极少了解。此外,这些方法也在计算上效率低下,并且需要显着的超参数调谐。在本文中,我们通过开发一种新的贝叶斯框架来涉及用于产生当地解释以及相关的不确定性来解决上述挑战。我们将本框架实例化以获取贝叶斯版本的石灰和kernelshap,其为特征重要性输出可靠的间隔,捕获相关的不确定性。由此产生的解释不仅使我们能够对其质量进行具体推论(例如,有95%的几率是特征重要性在给定范围内),但也是高度一致和稳定的。我们执行了一个详细的理论分析,可以利用上述不确定性来估计对样品的扰动有多少,以及如何进行更快的收敛。这项工作首次尝试在一次拍摄中通过流行的解释方法解决几个关键问题,从而以计算上有效的方式产生一致,稳定和可靠的解释。具有多个真实世界数据集和用户研究的实验评估表明,提出的框架的功效。
translated by 谷歌翻译
As machine learning black boxes are increasingly being deployed in domains such as healthcare and criminal justice, there is growing emphasis on building tools and techniques for explaining these black boxes in an interpretable manner. Such explanations are being leveraged by domain experts to diagnose systematic errors and underlying biases of black boxes. In this paper, we demonstrate that post hoc explanations techniques that rely on input perturbations, such as LIME and SHAP, are not reliable. Specifically, we propose a novel scaffolding technique that effectively hides the biases of any given classifier by allowing an adversarial entity to craft an arbitrary desired explanation. Our approach can be used to scaffold any biased classifier in such a way that its predictions on the input data distribution still remain biased, but the post hoc explanations of the scaffolded classifier look innocuous. Using extensive evaluation with multiple real world datasets (including COMPAS), we demonstrate how extremely biased (racist) classifiers crafted by our framework can easily fool popular explanation techniques such as LIME and SHAP into generating innocuous explanations which do not reflect the underlying biases. CCS CONCEPTS• Computing methodologies → Machine learning; Supervised learning by classification; • Human-centered computing → Interactive systems and tools.
translated by 谷歌翻译
When robots interact with humans in homes, roads, or factories the human's behavior often changes in response to the robot. Non-stationary humans are challenging for robot learners: actions the robot has learned to coordinate with the original human may fail after the human adapts to the robot. In this paper we introduce an algorithmic formalism that enables robots (i.e., ego agents) to co-adapt alongside dynamic humans (i.e., other agents) using only the robot's low-level states, actions, and rewards. A core challenge is that humans not only react to the robot's behavior, but the way in which humans react inevitably changes both over time and between users. To deal with this challenge, our insight is that -- instead of building an exact model of the human -- robots can learn and reason over high-level representations of the human's policy and policy dynamics. Applying this insight we develop RILI: Robustly Influencing Latent Intent. RILI first embeds low-level robot observations into predictions of the human's latent strategy and strategy dynamics. Next, RILI harnesses these predictions to select actions that influence the adaptive human towards advantageous, high reward behaviors over repeated interactions. We demonstrate that -- given RILI's measured performance with users sampled from an underlying distribution -- we can probabilistically bound RILI's expected performance across new humans sampled from the same distribution. Our simulated experiments compare RILI to state-of-the-art representation and reinforcement learning baselines, and show that RILI better learns to coordinate with imperfect, noisy, and time-varying agents. Finally, we conduct two user studies where RILI co-adapts alongside actual humans in a game of tag and a tower-building task. See videos of our user studies here: https://youtu.be/WYGO5amDXbQ
translated by 谷歌翻译
The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
Recent methods in self-supervised learning have demonstrated that masking-based pretext tasks extend beyond NLP, serving as useful pretraining objectives in computer vision. However, existing approaches apply random or ad hoc masking strategies that limit the difficulty of the reconstruction task and, consequently, the strength of the learnt representations. We improve upon current state-of-the-art work in learning adversarial masks by proposing a new framework that generates masks in a sequential fashion with different constraints on the adversary. This leads to improvements in performance on various downstream tasks, such as classification on ImageNet100, STL10, and CIFAR10/100 and segmentation on Pascal VOC. Our results further demonstrate the promising capabilities of masking-based approaches for SSL in computer vision.
translated by 谷歌翻译
Calorimeter shower simulations are often the bottleneck in simulation time for particle physics detectors. A lot of effort is currently spent on optimizing generative architectures for specific detector geometries, which generalize poorly. We develop a geometry-aware autoregressive model on a range of calorimeter geometries such that the model learns to adapt its energy deposition depending on the size and position of the cells. This is a key proof-of-concept step towards building a model that can generalize to new unseen calorimeter geometries with little to no additional training. Such a model can replace the hundreds of generative models used for calorimeter simulation in a Large Hadron Collider experiment. For the study of future detectors, such a model will dramatically reduce the large upfront investment usually needed to generate simulations.
translated by 谷歌翻译
Owing to the prohibitive costs of generating large amounts of labeled data, programmatic weak supervision is a growing paradigm within machine learning. In this setting, users design heuristics that provide noisy labels for subsets of the data. These weak labels are combined (typically via a graphical model) to form pseudolabels, which are then used to train a downstream model. In this work, we question a foundational premise of the typical weakly supervised learning pipeline: given that the heuristic provides all ``label" information, why do we need to generate pseudolabels at all? Instead, we propose to directly transform the heuristics themselves into corresponding loss functions that penalize differences between our model and the heuristic. By constructing losses directly from the heuristics, we can incorporate more information than is used in the standard weakly supervised pipeline, such as how the heuristics make their decisions, which explicitly informs feature selection during training. We call our method Losses over Labels (LoL) as it creates losses directly from heuristics without going through the intermediate step of a label. We show that LoL improves upon existing weak supervision methods on several benchmark text and image classification tasks and further demonstrate that incorporating gradient information leads to better performance on almost every task.
translated by 谷歌翻译